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Recursive Definitions
Supplement to Chapter 7 of Steinhart, E. (2009) More Precisely: The Math You Need to
Do Philosophy.  Broadview Press.  Copyright (C) 2009 Eric Steinhart.  Non-commercial
educational use encouraged!  All others uses prohibited.

1. Generations

We often define more complex objects in terms of simpler objects.  We can define more
complex sets in terms of less complex sets.  For example, consider Bob.  We want to
define all the descendents of Bob.  They are stratified into generations.  The zeroth
generation is just the set that contains Bob himself.  Thus:

Generation-0 = {Bob}.

The next generation is all the children of Bob.  This is

Generation-1 = { x | x is a child of Bob}.

We can go on to define next generation as the grandchildren of Bob.  These are all the
children of the children of Bob.  Hence they are all the children of the people in the
previous generation.  Thus

Generation-2 = { x | x is a child of any person in Generation-1}.

We can go on to associate each number with a generation of descendents.  So we are
defining a function from the numbers to the generations.  It’s inconvenient to use the
whole word Generation for each generation.  So we just abbreviate it as G.  Thus G is a
function that associates every number n with the n-th generation.  The n-th generation is
G(n).  We can now re-write the generations like this:

G(0) = {Bob};

G(1) = { x | x is a child of any person in G(0)};

G(2) = { x | x is a child of any person in G(1)};

. . .

G(n+1) = { x | x is a child of any person in G(n)}.

We’ve defined the various generations of descendents of Bob.  But how do we define the
totality of these descendents?  We define the totality by forming the union of all the
generations.  We are thus forming the union of all the G(n) for all finite n.  This union is



2

the generation at infinity.  It includes all finite generations.  It is the accumulation of all
these generations. So we use G(ω) to denote this generation:

G(ω) = G(0) ∪ G(1) ∪  . . . G(n) ∪ G(n+1) . . .

It’s clearly impossible to define G(ω) by writing out the whole infinite sequence of
unions of generations.  We write G(ω) as

G(ω) = the union of all the G(n) such that n is in ω.

In symbols, this is

G(ω) = the union of { G(n) | n is in ω};

G(ω) = ∪{ G(n) | n ∈ ω}.

We can use the recursion scheme to define the generations:

1. Initial Rule. For the initial number 0, there is an initial generation G(0).  If we are
definining the descendents of some person p, G(0) = {p}.

2. Successor Rule.  For every succesor number n+1, there exists a successor generation
G(n+1).  Formally, G(n+1) = { x | x is a child of a person in G(n)}.

3. Limit Rule.  For the limit number ω, there is a limit generation G(ω).  This is the
accumulation of all the previous generations: G(ω) = ∪{ G(n) | n ∈ ω}.

2. Hamming Spaces

Given some object, and some operations that change that object, you can define a system
of derived objects.  The resulting system of objects is a kind of space organized by a
similarity relation.  For example, let the objects be English words and the operation be
any edit that involves exactly one letter (either adding, subtracting, or altering a single
letter).  Table 1 illustrates part of the system that is derived from “life”.
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slime slim skim skit skirt

timed timid

lime

time
tame fame flame

line lone alone clone cone cane can
alive

ice
slick stick
kick
tick trick

lark

dive dice
lice lick

lack
black

five fire firs first fist list
give gave

glove grove grave gravel gavel
cost cast cat
fast fact fat

lose lost

most moist

live

love

move more mare mars marsh
wise wish wash wasp rasp grasp

farmwarn warm
worm

worn

torn ton

life

wife

wire wore

worse worst

Table 1. The system of edits starting with “life”.

We now define a series of generations of words derived from an initial seed word.  For
any word x, the set of words derived from x via a single edit is E(x).  Thus

E(x) = { y | y is derived from x via a single edit }.

We can use the recursion scheme to define the generations:

1. Initial Rule. For the initial number 0, there is an initial generation W(0).  If the initial
word is p, then the initial generation W(0) = {p}.  In our example, the initial word is
“life”, so W(0) = {“life”}.

2. Successor Rule.  For every succesor number n+1, there exists a successor generation
W(n+1).  Formally, W(n+1) = ∪{ E(x) | x ∈ W(n) }.
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3. Limit Rule.  For the limit number ω, there is a limit generation W(ω).  This is the
accumulation of all the previous generations: W(ω) = ∪{ W(n) | n ∈ ω}.

Given a system of objects, and an operation that maps the system into itself, we can
define the distance between any two objects x and y as the minimal number of operations
it takes to change x into y.  This is a notion of distance based on similarity – closer is
more similar and farther is less similar.  You can apply this notion of distance to possible
universes: how many changes does it take to go from one universe to another?

3. Empirical Knowledge

An important analysis of empirical verifiability is provided by Salmon (1966).  Salmon
intends his analysis to be an improvement of the old positivistic analyses of empirical
verifiability.  According to Salmon:

To say that a statement is verified is to say that it is supported by evidence.
To say that a statement is verifiable is to say that it could be supported by
evidence.  The evidence (actual or possible) plays the role of a premise –
more exactly, the statement of the evidence is a premise – and the verified
or verifiable statement is the conclusion.  Of course, in many important
instances the conclusion is not a deductive consequence of the premise but
is inductively supported by it. (Salmon, 1966: 463).

As a rough draft of a principle of verifiability, Salmon (1966: 464) says: "a statement
which is neither analytic nor self-contradictory is empirically verifiable if and only if it is
either an observation-statement or the conclusion of a correct inductive or deductive
argument from verifiable premises."  Since arguments can be iterated, the result is a rich
hierarchy of empirically verifiable statements.   We’ll formalize Salmon’s hierarchy.

We start with a small change in terminology.  It seems odd to say that the statements in
the hierarchy are empirically verifiable (as if they were going to be checked by someone).
It seems better to say that they are empirically grounded.

The set Observations is a set of observation statements.  This set is also known as the
observation base or the data base.  The set Maths is a set of statements taken to be
analytically true.  For example, Maths contains the axioms and definitions of some range
of mathematical theories and Maths is closed under deduction.  For any set of statements
in Maths, all the entailments of that set are in Maths.  We obtain the initial level S(0) by
joining all the statements in Observations with those in Maths:

S(0) = Observations ∪ Maths.

Given some set of statements X, the set Arg(X) is the set of all statements that can be
derived from X by means of some correct inductive or deductive argument.  We take
inferences to the best explanation to be inductive arguments.
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Given some level of statements S(n), we form the next level S(n+1) by including all the
statements that can be derived from S(n) and by including S(n) itself.  We thus obtain the
definition for all successor levels:

S(n+1) = Arg(S(n)) ∪ S(n).

To form the entire universe of empirically grounded statements, we just take the union of
all the levels.  This is the limit level.  It is defined as

S(ω) = ∪{S(n) | n ∈ ω}.

So a statement is empirically grounded (in some observations and mathematics) iff it is a
member of S(ω).  A theory is a set of statements.  A theory is empirically grounded (in
some observations and mathematics) iff it is a subset of S(ω).
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