Sets – Exercises

Exercises for Chapter 1 of Steinhart, E. (2009) More Precisely: The Math You Need to Do Philosophy. Broadview Press. Copyright (C) 2009 Eric Steinhart. Non-commercial educational use encouraged! All others uses prohibited.

1. Collections

Write out the following:

The set of A:	The set of the set of A:
The set of A and B:	The set of both A and the set of A:

The set of both A and the set of A:

The set of A, B, and C:

If x is $\{A, B\}$ and y is $\{C, D\}$ then write out:

$$\{\mathbf{x}\} = \{\mathbf{x}, \mathbf{y}\} = \{\mathbf{x}, \mathbf{y$$

$$\{\{x\}\} = \{\{x\}, y\} =$$

Answer the following (true or false):

$1 = \{1\}?$	$\{1\} = \{\{1\}\}?$
$\{1,1\} = \{1,\{1\}\}?$	$\{1, B, 2\} = \{2, 1, B\}?$

2. Membership

True or false:

Is $A \in \{A\}$?	Is $\{A\} \in \{\{A\}\}$?
Is $A \in \{\{A\}\}$?	Is $\{B\} \in \{\{A\}, \{B\}\}$?
Is $\{A, B\} \in \{A, B\}$?	Is $\{\} \in \{A\}$?

3. Set Builders

Using the set $Y = \{1, A, 2, B, 3, C\}$, write out the following sets:

4. Unions

Write out:

$\{a, b\} \cup \{1\} =$	$\{a,b\} \cup \{c,d\} =$	
$\{a\}\cup\{b\}\cup\{c\}=$	$\{\{A\}\} \cup \{\{B\}\} =$	
5. Subsets		
$\{A, B\}$ is a subset of $\{A, B, C\}$?	$\{A\}$ is a subset of $\{A, B\}$?	
A is a subset of {A}?	{A} is a subset of {{A}}?	
$\{A\}$ is a subset of $\{A, \{A\}\}$?	$\{A, B\}$ is a subset of $\{A, B\}$?	
Write the subsets of $\{1, 2\}$:		
6. Power Sets		
The power set of $\{1, A\}$ is:		
The power set of $\{Q\}$ is:		
The power set of $\{\}$ is:		
7. Diagramming Sets		
Use dots for sets and an arrow from x to y iff x is a member of y.		

Draw the diagram for $\{A, B\}$.

Draw the diagram for $\{A, \{A\}\}$

Draw the diagram for $\{\{A\}, \{B\}\}$.

Draw the diagram for $\{\{\}, \{\{\}\}\}$.

8. Numbers as Sets

Using the idea that n is the set of all numbers less than n, write out:

0 1 2 3 4

9. Diagramming Numbers as Sets

Draw a diagram for each of the numbers in exercise 8 above:

0

1

2

3

4

10. Iteration versus Accumulation

An *iterative hierarchy* says that every next level is just the power set of the previous level. Consider this iterative hierarchy:

 $H(0) = \{A\};$ H(n+1) = pow H(n). Write out levels H(0), H(1), and H(2) of this iterative hierarchy:

H(0) =

H(1) =

H(2) =

A *cumulative hierarchy* says that every next level is the power set of the previous level unioned with the previous level.

Consider this cumulative hierarchy:

 $K(0) = \{A\}; K(n+1) = pow K(n) \cup K(n).$

Write out levels K(0), K(1), and K(2) of this cumulative hierarchy:

K(0) =

K(1) =

$$K(2) =$$

Give an example of an object that appears on K(1) that does not appear on H(1):

Give an example of an object that appears on K(2) that does not appear on H(2):

Explain why K(n) is richer than H(n) for n > 0:

11. Ordered Pairs

Diagram (Sue, Bob)

Diagram (Bob, Bob)

Diagram (Sue, {Sue})

Diagram ({}, {{}})

12. Cartesian Products

Write the Cartesian Product $\{A, B\} \times \{1, 2\}$.

Write the Cartesian Product {Abe, Bob, Sue} × {Happy, Sad}.